Home » AI Development with TensorFlow

Opleiding: AI Development with TensorFlow

Bij: OEM Office Elearning Menu

 

OEM Office Elearning Menu

P.J, Oudweg 4
1314 CH ALMERE
 

Inhoud van de cursus

TensorFlow: Introduction to Machine Learning
Explore the concept of machine

Course Overview
Introduction to Machine Learning Algorithms
Understanding Machine Learning
Understanding Deep Learning
Supervised and Unsupervised Learning
TensorFlow for Machine Learning
Tensors and Operators
Understanding How to Install TensorFlow
Installing TensorFlow on the Local Machine
Working with Constants
The Computation Graph with TensorBoard
Working with Variables and Placeholders
Variables and Placeholders on TensorBoard
Updating Variables in a Session
Feed Dictionaries
Named Scopes for Better Visualization
Eager Execution
Exercise: Machine Learning and TensorFlow
Exercise: Working with Computation Graph

TensorFlow: Simple Regression and Classification Models
Explore how to how to build and

Course Overview
Understanding Linear Regression
Gradient Descent and Optimizers
Explore the Boston Housing Prices Dataset
Creating Training and Test Datasets for Regression
Base Model with scikit-learn
Setting up the Linear Regression Computation Graph
Train and Visualize the Linear Regression Model
Visualize the Model with TensorBoard
The High-Level Estimator API
Linear Regression with Estimators
Prediction Using Estimators
Understanding Binary Classification
The Cross Entropy Loss Function and Softmax
Continuous and Categorical Data
Creating Training & Test Datasets for Classification
Binary Classification Using Estimators
Exercise: Working with Linear Regression
Exercise: Working with Binary Classification

TensorFlow: Deep Neural Networks and Image Classification
Discover how to apply deep learning

Course Overview
Neural Networks and Deep Learning
Basic Structure of a Neural Network
The Mathematical Function Applied By a Neuron
Linear Transformation and Activation Functions
Training a Neural Network Using Gradient Descent
Forward Pass and Backward Pass
Image Representations in Machine Learning
Set Up TensorFlow and Use Jupyter Notebooks
The MNIST Dataset
Training an Estimator for Image Classification
Predicting Image Labels
Drawbacks of Deep Neural Networks for Images
Exercise: Working with Neural Networks
Exercise: Working with Image Classification

TensorFlow: Convolutional Neural Networks for Image Classification
Examine how to work with

Course Overview
Neural Networks and Deep Learning
Basic Structure of a Neural Network
The Mathematical Function Applied By a Neuron
Linear Transformation and Activation Functions
Training a Neural Network Using Gradient Descent
Forward Pass and Backward Pass
Image Representations in Machine Learning
Set Up TensorFlow and Use Jupyter Notebooks
The MNIST Dataset
Training an Estimator for Image Classification
Predicting Image Labels
Drawbacks of Deep Neural Networks for Images
Exercise: Working with Neural Networks
Exercise: Working with Image Classification
Explore how to model language and

Tensorflow: Word Embeddings & Recurrent Neural Networks
Course Overview
One-Hot Encoding of Words
Frequency-Based Encoding
Prediction-Based Encoding
Word2vec and GloVe Embeddings
Recurrent Neurons
Unrolling a Recurrent Memory Cell
Training a Recurrent Neural Network
Long Memory Cells
Exercise: Working with Word Encoding
Exercise: Working with Recurrent Neural Networks

Tensorflow: Sentiment Analysis with Recurrent Neural Networks
Discover how to construct neural

Course Overview
Configuring the TensorFlow Environment
Training Data
Data Pre-Processing
Unique Identifiers to Represent Words
Construct a Recurrent Neural Network
Training the Neural Network
Data Pre-Processing to Use Pre-Trained Word Vectors
Lookup Table to Map Unique Identifiers
Sentences Using Word Identifiers
Sentiment Analysis Using Pre-Trained Vectors
Exercise: Performing Sentiment Analysis

Tensorflow: K-means Clustering with TensorFlow
Discover how to differentiate

Course Overview
Supervised vs. Unsupervised Learning
Supervised Learning Characteristics
Unsupervised Learning Characteristics
Unsupervised Learning Use Cases
Objectives of Clustering Techniques
K-means Clustering
K-means Clustering Algorithm
Install TensorFlow and Work with Jupyter Notebooks
Generate Random Data for K-means Clustering
K-means Clustering Using Estimators
The Iris Dataset
Clustering the Iris Dataset
Exercise: Working with Unsupervised Learning
Exercise: Working with Clustering

Tensorflow: Building Autoencoders in TensorFlow
Explore how to perform

Course Overview
Efficient Representation of Data Using Encodings
Autoencoders
Principal Component Analysis
Performing Principal Component Analysis on Datasets
Principal Component Analysis with scikit-learn
Autoencoders for Principal Component Analysis
The Fashion MNIST Dataset
Autoencoders for Dimensionality Reduction
Exercise: Working with Autoencoders

Toelatingseisen: wat heb je nodig?

Er is geen specifieke voorkennis vereist.

Duur van de cursus

15 uur

Bijzonderheden

Award Winning E-learning

Plaatsen / leslocaties

Heel Nederland, E-learning, Online

Algemene informatie over de cursus

Bestel deze geweldige E-learning Training AI Development with TensorFlow online cursus, 1 jaar 24/ 7 toegang tot rijke interactieve video’s, spraak, praktijkopdrachten, voortgangsbewaking door rapportages en testen per onderwerp om de kennis direct te toetsen. Na de cursus ontvangt u een certificaat van deelname.

Duur: 15 uur
Taal: Engels
Certificaat van deelname: Ja
Online toegang: 365 dagen
Voortgangsbewaking: Ja
Award Winning E-learning: Ja
Geschikt voor mobiel: Ja

Informatie aanvragen

Gegevens aangeduid met een * zijn verplicht in te vullen.
jaar
 
resterend: tekens
 
54088 Typ de code exact over: (hoofdlettergevoelig)
 
Copyright 2009-2020 Particuliereopleidingen.nl | Algemene voorwaarden | Overzicht van onze aanbieders | Adverteren